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Bayes Prediction Density and Regression Estimation
A Semiparametric Approach

By R. C. Tiwari', S. R. Jammalamadaka^ and S. Chib^

Abstract: This paper is concerned with the Bayes estimation of an arbitrary multivariate density,
fix), X e ^*. Such an f(x) may be represented as a mixture of a given parametric family of densi-
ties {h(x\e)} with support in /?*, where 6 (in /?'') is chosen according to a mixing distribution G.
We consider the semiparametric Bayes approach in which G, in turn, is chosen according to a
Dirichlet process prior with given parameter a. We then specialize these results when/is expressed
as a mixture of multivariate normal densities it>(x\ii. A) where M is the mean vector and A is the
precision matrix. The results are finally applied to estimating a regression parameter.

1 Introduction

In a recent paper, Ferguson (1983) presents a nonparametric Bayes procedure for
estimating an arbitrary density /(x) on the real line. This paper extends the results of
Ferguson to the multivariate case and considers the estimation of the predictive density
as well as the regression parameter. Consider a /: x 1 random vector X = (Y, X2 Xi^)'
where, in the regression context, Y may be regarded as the dependent variable and
{X2, •••, A'fc) as the set of independent variables. We assume that X has an unknown
density f(x), x ER'' . Such an f(x) may be represented as a mixture of a multivariate
normal densities {0(X|M, A)},i.e.,

(1)

where ju, the mean vector and A, the precision (or the inverse ofthe variance) matrix
of the normal density, are chosen according to a mixing distribution G. Note that any
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distribution on R can be approximated by such a mixture to any preassigned accuracy

in the Levy metric, and any density on R'^ can be approximated similarly in the Z,j

norm (cf. Ferguson 1983).

We consider the semiparametric Bayes approach, in which the unknown mixing

distribution G, is chosen according to a Dirichlet prior with parameter a, say D{a). Our

objective is to find the Bayes estimate fn(x), of the density of a future observation

Xn+i given a random sample Xi, ...,Xn from f(x); that is, to find the semiparametric

Bayes prediction density

(2)

where, in view of representation (1), the expectation in (2) is with respect to the

posterior distribution of C given the sample (x j , ...,Arn) which is a mixture of Dirichlet

processes (see, equation (11)).

We also consider the problem of fmding the Bayes estimate of the parameter /3
that minimizes the mean-squared prediction error

_E

over all (3 = (/32,..., 13̂ ) G/?*"*. Note that (3) is minimized when /3 is

P*=D-^a, (4)

where

and

= ( ^ 2 . •••.flfc). w i t h ai=

As stated in PoU (1985) (see also Tiwari, Chib and Jammalamadaka 1988), "the

achieved estimate ^* provides the best linear prediction of Yn+i in terms
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This paper is organized as follows. Section 2 contains preliminaries and some
general results which are then specialized to the case of normal mixtures in Section 3.
Section 4 contains the Bayes estimate of j3*, while the last section includes some com-
ments on the computational aspects.

2 Preliminaries and General Results

This section provides the basic definitions and results that will be used in the sequel.
Let X be ^k xl random vector. Then X has a /:-variate normal distribution with mean
vector /i and precision (the inverse of variance) matrix A, denoted by Z ~ N^(^x, A), if
its pdf is given by

0(X|M, A) = (27rr*/2 |A|i/2 exp {-(l/2)(x -M) 'A(X - / i ) } , (5)

where /i G/?*, and A is a symmetric positive definite (s.p.d.) matrix of order k.
Ak xk random matrix A has a Wishart distribution if its pdf is given by

exp {-(1/2) t r (AA*-i)}, (6)

where A* is a scale matrix of order k, v>k is the degrees of freedom, and c is the
normalizing constant given by

I nu+l -ill).

We shall use the notation A ~ ^^(A*, v) to denote that A has the pdf given by (6).
The kx\ vector X has a multivariate Student's ^-distribution if its density func-

tion is given by

(7)

where /i e/?*, ^̂  > 0 is the degrees of freedom and A is a s.p.d. matrix of order k. We
use the notation X ~ MVtidix, A, v) to denote that X has the pdf given by (7).
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Let a ( ) be a finite non-null finitely additive measure on (R'^ ,R'^). A random
probability measure P on (R'',R'^) is a Dirichlet process with parameter a, and write
PGD(a), if for every finite s and every measurable partition Ai A^ of R"^, the
random variables (P{Ai, ...,P(As)) have the Dirichlet distribution with parameters
{a(A 1),. . . , aiA,)) (cf. Ferguson 1973).

Let 69 represent the degenerate probability measure at a single point 0. Let G be
the distribution function associated with the random probability measure P. Then,
under D{a), G can expressed as (cf. Sethuraman and Tiwari 1982):

, (8)

where

(1)61,62, ••; are iid on (/?**, R'') with the common distribution GQ = a{-)IM,

(ii) ipi,P2, . . . )and {61,62, . . .)are independent,

(iii) qi =Pi,<?2 =P2/(1 -Pi) .<73 =P3/(1 " P i - P 2 ) . ••• are iid Beta (1,M),M = a(R'').

More generally than (1), one may assume that the unknown density \pix) is expressed

as a mixture of a family of fc-variate densities {h(x\6)}, with the mixing distribution

(9)

If this mixing distribution G, is assumed to have a Dirichlet prior, then from (8)

i(ei). (10)

Let x i , ...,Xn be a random sample from \IJ(X) given by (9). This is equivalent to first

choosing 6i,...,6n i.i.d. from Go(6), and then x/fiom/!(x; 16/)' ' = 1. •••." indepen-

dently. Then the posterior distribution of G given Xi, ...,Xn is a mixture of Dirichlet

processes (cf. Antoniak 1974)

(11)
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w h e r e dHie^, ...,6n\xi, ...,Xn),the p o s t e r i o r d e n s i t y of 6 1 , . . . , 6n given Xi Xn,

is

with the notation M^"^ = M(M + I) ...(M+ n-I). From (11) we have

M

M + n
0 j x i x„)

1 "
w h e r e & „ { ) = - 2 d g . , is t h e e m p i r i c a l m e a s u r e o f t h e o b s e r v e d 6 1 , . . . , 6 n a n d

n i=i '

corresponds to the normalized a-measure. Consequently we have the following:

Theorem 1: The Bayes estimator of i//(x) under squared error loss function, i//n(
)|x 1,..., Xn], is given by

where 4'o(x), the estimate of \p(x) for no sample size, is given by

\pQ{x) = E\p(x) = fh{x\6)dGQ(6) (14)

and

^n(x) = - 2 S...ShQc\6,)dHi6^,...,6„\xl,...,x„). (15)

The nonparametric Bayes estimate of \p(x) is, therefore, seen to be a weighted average
of the prior guess </'o(^) 8^^^" in (14), and \pnix) given in (15). Two special cases of
interest as M, the strength in the prior goes to zero and infinity, may be considered as
in Ferguson (1983).
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In particular, as A/ -> «>, the 6j's are all distinct and the prediction density is given
by

= - 2 ^x\xi), (16)
n iin i=i

where

Sh(x\6)hix,\6)dGoi6)

is the Bayes prediction density of x given the one observation x/.

3 Results for Normal Mixtures

In this section we specialize the results of the previous section by letting 6 = (ju. A)
and h(x\6) be a multivariate normal density with mean ^ and the precision matrix A.
We also let GQ be the joint prior distribution of (ju. A) given by

M*), b*>0 (17)

and

A~W,,iA*,p*). (18)

Now, let the unknown density f(x), he a random mixture of a multivariate normal
densities as in (1) i.e..

) (19)

where 0(-|/i, A) is the pdf in (5).
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In (19), consider the special choice of a Dirichlet process prior for G with param-
eter a. = MGQ , where GQ is the natural conjugate prior of (/i. A) given by (17) and (18)
namely the normal-Wishart. It is important to note that nothing prevents us from
choosing an arbitrary measure GQ , as the prior of 6.

Lemma 1: Let (/n. A) have a joint normal-Wishart prior given by (17) and (18). Then
the prior guess of the prediction density at x, /o(jf), is given by (see equation (14))

(20)

a /:-variate MVt density with mean vector /i*, precision matrix 0o =.(^* ~ ^ + \)A*b*l
{b* -̂  1), and VQ = (y* — k + l) degrees of freedom.

The proof of Lemma 1 is given in the Appendix.
Using Theorem 1 and Lemma 1, we are now able to provide the Bayes prediction

density of a future observation A'n 4. i , given ;ci, ...,Xn.

Theorem 2: Given f(x) = f <t>(x \ix, A)cfG(/i, A), with G eD(a), and a = MGQ , where GQ
is the normal-Wishart prior specified in (17) and (18), the Bayes prediction density of
^n+i givenjci,...,jcn is

where/O(A:) is the MVt density given in (20) and

...,xj. (22)

The Bayes prediction density is therefore a weighted mixture of a multivariate-^ den-
sity /o(x) and fn(x), with the weights MI(M + n) and «/(Af + n), respectively. The den-
sity/n(x) can be evaluated numerically using the results of Section 5.

Two special cases which do not require a numerical evaluation are given next. The
following Theorem 3 for Af ->• 0 yields the usual parametric result in which (;u. A) has
the normal-Wishart prior and Xj, ...,Xn is a random sample from <p(x\n. A).
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Theorem 3: Let x.l/i, A ~A f̂c(/i, A)/ = 1, . . . ,n ,MIA ~NkiP-*, A*), and A ~ W^ih*, v*).
Then as A/ -> 0, then density in (21) becomes

(23)

n n
where x = Z Xj/n and 5 = 2 ( X / - X ) ( A : , - - J C ) ' . D

1=1 /=i

A proof of this theorem is included in the Appendix. Note that f^{x) in (23) is a
^-variate MVt density with mean vector ju** ={b*n* +nx)l{b* +n), precision matrix
0** = (b* + n)[nb*(b* + n)-\x - n*){x - fi")' + A*-^ +S]-^/{b*+n + I) and
n + u* -k + I degrees of freedom. Setting n = 1 and x =xi in Theorem 3 gives the

Bayes prediction density ofXn+i given one observationx,(/ = I, ...,n):

Coroilary 1: Let Xi\ii, h~ N^ifi, A), ii\A~ N^ifx* ,b*A) md K~Wk{A*,v*). Then
as A/ ->̂  0, the Bayes prediction density of A'n+, given x,- is

/i , ,(x) a [1 + (X - M / ) > / ( X - M / ) ] - ^ * ^ " - ' ^ * ' ^ / '

a A:-variate multivariate-r pdf with mean vector n] =(b*ii*+Xi)l(b* + 1) precision
matrix i/// =ib* + \)[b*ib* + l)-^{xi-n*)(xi-n*)' + A*~^]-^lib* + 2)mdu-k + 2
degrees of freedom.

The second special case, as M^°o, is covered by the following result which fol-
lows from Corollary 1 and (16).

Coroiiary2: UtXiltx, A~NkQi,A)i = \,...,n, iJi\A~N^Qji*, b*A),md A~ WkiA*,v*)
then as Af->-o° the Bayes predic t ion densi ty of A'„^.^ given Xi, ...,Xn,f^{x), is given
b y a finite mix ture of multivariate-r densities i.e.,
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4 Bayes Estimation of a Regression Parameter

The results obtained in the previous section allow us to find the estimate of |3* given in
(4), where (3* minimizes the prediction mean-squared error that is specified in (3).
Although the estimate of 0* using the Bayes prediction density in Theorem 2 cannot
be computed in a closed form, the general principle can be illustrated with the follow-
ing cases.

From (3) we have

where for 1 < i, / < A: - 1, the typical elements of D and a are

,-„ ̂ . 1

and

For an /which is a normal mixture, for the no-sample case, the estimate of/3* can be
computed using the following. Let M* = (MI, ••.,Mfc)' and let A*"* =((2^-)). 1 < / .
/' < Jc, then the /, /-th element of £) is

and the/-th element of a is

A similar procedure can be used to compute the estimate of (3* when Af->-0. Letting
1 = ((£*)*)), 1 < / , / ' < fc, and /i,** denote the /-th element of n** we have

- A: -
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and

Finally, for the M -*°° case, djj's and afs can again be given explicitly. The details are
ommitted.

5 Remarks and Computational Aspects

The usual issues in density estimation regarding the kernel and the window-length
could be related to the choice of the prior a in our Bayes set-up, although the specifies
need further investigation. In particular, the special form (16) corresponds to a variable
kernel estimate, as Ferguson notes. Computation of (13), the Bayes estimator of the
density can be done along the lines of Ferguson (1983), which contains an illustration
for density on ^ ' . If we define

n , i ) ^

then Lo (1978) provides the following representation of the function H

n hMOi)] n diMGo + n '
1=1 i \

Using this, one can rewrite the expression for i//n,a(x) in (13) in terms ofthe function

h(x, JCi , ...,Xn)

X)

The computation of !//„ o,(-'̂ ) clearly depends on the evaluation ofthe ratio in equation
(24).
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If we expand the product measure which appears in equation (24), there are n\
terms and each term of the expansion determines a partition Q = {K i, ...,Kn} oi the
data set {x,, ...,x«} with the property that 0/ = d,- if and only if xt^K, Xj &K, for
some set K in Q. Hence, we can write h(xi, ...,Xn)as

(25)

where

z«2)= n ; n hix,\d)dGo(e) (26)
K&Q Xi&K

and PM{Q) is the probability of selecting a particular partition, Q. Define

ih{x\e) n
2(G) ^ „,,

n
where |^ | is the cardinality of the set K. For the specific choice of GQ that we use in
(17) and (18), we can simplify the expression for Z(Q) and Y{Q) given in (26) and
(27), respectively.

GivenXj, ...,Xn the Monte Carlo procedure entails the following steps:

(i) Select a partition: This is done by using Kuo (1986)'s method. Start the first set
of partitions with Xi, say. Then, for /= 1 , 2 , . . . , « - 1 , JC/+i starts a new set with

M I r
probability ——:—; otherwise it is placed in an existing set with probability

M + 2 y

where r is the number of elements already in that set. In the computations, we need
only to record the number of the sets in a partition, and the indices in each class, and
for this partitioning process, one may use the indices 1 through n and not the data
themselves.

(ii) Estimating !//„_£,: Once a particular partition Qi is randomly chosen, compute
Z{Qi) and Y(Qi) using the equations (26) and (27). This process is replicated N times
to give Z{Qt) and Y{Qi), KKN. and the Monte Carlo estimate of ^n{x)in (13)is
given by

E iQ,)
(=1 1=1
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The estimate of >/'n,a(x) is then computed using (13). The variance of this estimator
can be computed using the asymptotic formula for the variance of the ratio of means
(see,Cochranl977,p. 155):

where the estimates

2 Z(Qi)IN, Y{Q) = ixy= 2
1=1 i=l

[N(N- 1 )]-> 2 (Z(a) -Z{Q)f,
/i

2̂

and

Oy, = [N(N- l )]- i[r Z{Qi)Y(Qt)-NZ{Q) • Y{Q)]

are used in place ofthe corresponding parameters.

Appendix

Proof of Lemma 1: By using the definition in (14), we have that

tr A (x - Ut*)ix-n*)'-^^-i-A*-AdA
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On using the normalizing constant of the Wishart distribution. Now using the result
that if F is a nonsingular (p xp) matrix, a and b &R'' (cf. Press 1982, p. 20), then

\V + ab'\=\V\[\+b'V-U],

we get that

b* -("'+1)12

This completes the proof. D

Proof of Theorem 3: Notice that f^
posterior density of (^i, A) given^i, ..
see Press 1982, p. 187) and is given by

is the expectation of 0(x|iu, A) w.r.t. the
Xn. This posterior density is well known (e.g..

exp - -

exp
1

from which we get that

(A.I)

and

, ...,x„, A* - WMS + A*-' + nb*(b*

Using (A.I) and (A.2) it follows that

(A.2)

..., x„, , A(b* + n)/ib* + n (A.3)
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Let the pdf of in (A.3) be denoted b y / J ( U i , ...,Xn, A). Then, from (A.2) and (A.3)
the Bayes prediction density of Xn.n is

a f |A|*/2 exp - ^ t r
A \ 2

exp - - t r A[5 + A*-' + nb*ib* + n)-\x-n*)ix -ti*)']\dA

from which the result follows. D

References

Antoniak CE (1974) Mixtures of Dirichiet processes with applications to Bayesian nonparametric
problems. Ann Statist 2:1152-1174

Cochran WG (1977) Sampling techniques. John Wiley & Sons, New York
Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Statist 1:209-230
Ferguson TS (1983) Bayesian density estimation by mixtures of normal distributions. In: Rizvi MH,

Rustagi JS, Siegmund (eds) Recent advances in statistics. Academic Press
Kuo L (1986) Computations of mixture of Dirichiet processes. SIAM J Scientific and Statistical

Computing 7:60-71
Lo AY (1978) On a class of Bayesian nonparametric estimates: density estimates. Rutgers Universi-

ty, New Brunswick, NJ
PoU I (1985) A Bayesian nonparametric estimator for multivariate regression. Journal of Eco-

nomeUics 28:171-182
Prakasa Rao BLS (1983) Nonparametric tunvtional estimation: Academic Press
Press SJ (1982) Applied multivariate analysis: using Bayesian and frequentist methods of inference.

Robert E. Krieger Publishing Co
Sethuraman J, Tiwari RC (1982) Convergence of Dirichiet measures and the interpretations of

their parameter. In: Gupta SS, Berger JO (eds) Statistical decision theory and related topics. III,
vol 2. Academic Press

Tiwari RC, Chib S, Jammalamadaka S Rao (1988) Nonparametric Bayes estimate for multivariate
regression with a Dirichiet invariant prior. In: Ali Festschrift: Forthcoming

Wilks SS (1962) Mathematical statistics, 2nd ed. John Wiley, New York






